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Resul ts  of exper imenta l  studies a r e  shown concerning the ae rodynamic  c h a r a c t e r i s t i c s  of .dif-  
fuse r s  with the t rans i t ion  prof i le  designed for  a n e a r - s e p a r a t i n g  turbulent boundary layer .  
The t e s t  r e su l t s  a r e  shown to a g r e e  c lose ly  with calculat ions.  

The choice of opt imal  t rans i t ion  p rof i l es  in d i f fusers  ensu res  a m a x i m u m  dece le ra t ion  of the s t r e a m  
within a given length of path.  Exper imenta l  studies of conical d i f fusers  have shown that,  within the region 
of adhes ive  flow, the l o s s e s  in total p r e s s u r e  d e c r e a s e  as  the d ivergence  angle i n c r e a s e s ,  until s epara t ion  
occu r s  a t  some  sect ion  [1]. Thus ,  the p r e s s u r e  is r e c o v e r e d  bes t  in a n e a r - s e p a r a t i o n  mode of flow, while 
the lo s ses  will sharply  i nc r ea s e  once sepa ra t ion  occurs .  

I t  is reasonable  to suppose that one poss ib le  method of reducing the lo s ses  during dece le ra t ion  of a 
s t r e a m  would be to prof i le  the d i f fuser  wall  in such a way as  to make  the flow at  every  channel sect ion suf -  
f iciently c lose  to separa t ion  (sur face  f r ic t ion T w - 0). A channel with a t rans i t ion  prof i le  based  on this 
cons idera t ion  should have the opt imal  ae rodynamic  cha rac t e r i s t i c s .  The idea was disc losed in the nineteen 
th i r t ies  by Dointsyanski i  [2]. The prof i le  of a di f fuser  with a c i r cu l a r  or  flat  c r o s s  sec t ion  and with a n e a r -  
sepa ra t ion  boundary l aye r ,  i .e . ,  a so -ca l l ed  " n e a r - s e p a r a t i o n "  d i f fuser  has the shape of a bell .  At  the en-  
t r ance  sect ion of such a channel,  where  the boundary l aye r  is re la t ive ly  thin, the local  d ivergence  angles 
may  be l a rge  but,  as  the boundary l aye r  becomes  th icker ,  they should dec r ea se  so as  to i m p a r t  to the flow 
its m a x i m u m  capabi l i ty  of overcoming  local p r e s s u r e  gradients  without separa t ion  along the ent i re  channel. 

N e a r - s e p a r a t i o n  turbulent  flow at  a f ia t  wall  was  rea l i zed  in [3, 4]; i t  has  been revea led  that such a 
flow is r a t h e r  s table .  Be l l - shaped  d i f fusers  the prof i le  of which a l m o s t  sa t i s f i es  the conditions for a n e a r -  
separa t ion  boundary l aye r ,  as  explained in [5, 6], a r e  often m o r e  efficient than d i f fusers  with s t r a igh t  walls  
and adhes ive  flow. The advantage h e r e  may  be ei ther  in t e r m s  of reduced l o s se s  pe r  ce r t a in  channel length 
or in t e r m s  of reduced axial  d imensions  a t  the s a m e  eff iciency level .  

An approx imate  method of calculat ing the geomet ry  and the ae rodynamic  c h a r a c t e r i s t i c s  of n e a r -  
s epa ra t ion  d i f fusers  with a f la t  or  c i r cu l a r  c r o s s  sect ion has  been  outlined in [2]. This  method is based  on 
known re la t ions  for  a two-dimensional  and an axia l ly  s y m m e t r i c a l  turbulent  boundary l aye r  a t  s epa ra t ion  
[7]. Natura l ly ,  using the s i m p l e s t  approx imate  method for calculat ing the turbulent  boundary l aye r  will 
yield a ce r t a in  approximat ion  in the final r esu l t s .  At the s a m e  t ime,  however ,  i t  can revea l  the bas ic  c h a r -  
a c t e r  of the re la t ions  which govern the p e r f o r m a n c e  of d i f fusers  with n e a r - s e p a r a t i o n  flow. Applying m o r e  
complex  theor i e s ,  on the other  hand, would hard ly  be justified. This  is because ,  f i r s t  of a l l ,  such theor ies  
become  unwieldy even for  a two-dimensional  boundary l aye r  and such theor ies  fully accounting for the e f -  
fects  of t r a n s v e r s e  su r f ace  c u r v a t u r e  have not yet  been  developed for  an axia l ly  s y m m e t r i c a l  boundary l aye r .  

The theoret ica l  s t udy  of n e a r - s e p a r a t i o n  d i f fusers  in [2] was based on the following assumpt ions :  that  
the flow is i ncompres s ib l e ,  that the s t a g e  p r e s s u r e  a c r o s s  the channel is i m ~ r i a b l e ,  and that the turbulent  
boundary l aye r  is about  to s epa ra t e  along the ent i re  channel (~w = 0). In this a r t i c l e  we will use  the f o r m u -  
las  which have  been der ived  in [2] for  de te rmin ing  the c h a r a c t e r i s t i c s  of the ent rance  s tage (in the p r e s e n c e  
of a potent ia l - f low nucleus) of c i r c u l a r  d i f fusers :  
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Fig. 1. Compar i son  of theoret ical  and experimental  values for a 
c i r cu la r  diffuser p rof i l ed  according  to the c r i t e r i a  zX~ = 0.1, k 
= 0.325, r w = 0: 1) n; 2) u6i; 3) u6, u61; 4) A***; 5) A*. 

Fig. 2. Dis tor t ion of velocity prof i les  in the diffuser (A~ = 0.1, 
k = 0.325). 

divergence index 

1{ [ . ]} 
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velocity outside the boundary layer  
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coefficient  of t o t a l -p re s su re  loss 
A*** A0 

~ =  n~ (l _ A,)~ (: --A;) ~ 

and var ia t ion along the axial coordinate 

= k2x/r~o ---- - -  4 u 6 p 2  , P = I / ~ - ) E  (%; 0). 
1 

Here  k is an empir ical  constant  in the express ion for the displacement  path l = Icy; E(~06; 0) is an elliptic 
integral  of the second kind with the a rgument  ~05 = sin -1 J $  and with the modulus cos O = J 2 / 2 ;  A = ,~ /F ;  
A* = ~ * / F ;  A** = v~**/F; A*** = v~***/F; H = A*/A**;  H** = A**/A;  a n d  6 = 6 / r  w .  

The calculation method is an approximate  one, since it is based on the s imples t  approximation for 
the fr ict ion distr ibution and for the mixing length a c r o s s  the boundary layer .  The design- theoret ical  ana ly-  
sis becomes much s impler  if a nea r - sepa ra t ing  {urbulent boundary layer  is assumed along the entire chan-  
nel - even at  the entrance section. In real i ty ,  though, if separat ion does not begin at the entrance,  n e a r -  
separa t ion flow can exist  only at some distance behind the entrance.  In the tat ter  case  there will be a seg-  
ment along which t ransi t ion f rom adhesive to nea r - sepa ra t ion  flow takes place.  The existence of such a 
t ransi t ional  channel segment  may cause the aerodynamic  charac te r i s t i c s  of the channel to depend on the 
Reynolds number  a t  the entrance.  For  a complete nea r - sepa ra t ion  flow, in the meant ime,  the Reynolds 
number has no effect on the boundary layer  and thus on the diffuser charac te r i s t i c s .  

According to the formulas  given here ,  the geometry  and the aerodynamic charac te r i s t i c s  of nea r -  
separat ion diffusers  depend on the single pa r ame te r  A~, which represents  the effect of initial flow 
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Fig.  3. Compar i son  of theore t ica l  and exper imenta l  values  
for  a c i r c u l a r  d i f fuser  p r o f i l e d t o  COnform to ~ = 0.1, k 
= 0.400, T w = 0: 1} n; 2) us;  3} u6t; 4) A***; 5) A*. 

Fig. 4. Dis tor t ion  of veloci ty  p ro f i l e s  in the di f fuser  (A~ 
= 0.1, k = 0.400). 

nonuniformity a t  the ent rance .  Indeed, it  follows f rom the continuity equation that this p a r a m e t e r  defines 
uniquely the m e a n - t o - m a x i m u m  veloci ty  ra t io  a t  the ent rance  sect ion:  

A o =  1 Uo 
U5 0 

The der ived  equations a r e  valid for A~ > 0 and become  meaning less  when A0* = 0, s ince n e a r - s e p a r a t i o n  
flow a t  the ent rance  is not poss ib le  then. 

The r e su l t s  of calcula t ions  have shown that,  as  the initial  nonuniformity i n c r e a s e s ,  the d ivergence  
index over  a given dif fuser  length d e c r e a s e s  while the loss  coeff icient  i nc r ea se s .  

In o r d e r  to design the d i f fuser  prof i le ,  one m u s t  know the value of the empi r i ca l  constant  k. This  
constant  appea r s  as  a mul t ip l i e r  in the express ion  for the axial  coordinate  ~ and this makes  it poss ib le  
qual i tat ively to de t e rmine  the  basic  t rends  of n e a r - s e p a r a t i o n  d i f fuser  c h a r a c t e r i s t i c s ,  even if the value 
of the empi r i ca l  constant  is unknown. 

The value of k was f i r s t  roughly de te rmined  f rom a ve ry  l imited amount  of avai lab le  data on n e a r -  
sepa ra t ion  flow a t  a channel wall ,  whereupon it  was ref ined during the exper iment .  Changing the value of 
k caused only a uni form dis tor t ion of the ~ -coordinate .  A compar i son  of our  calculat ions with the data ob-  
tained by Stra t ford [3] and Nes t l e r  [8] gave k = 0.325-0.400. B y  ass igning  the s m a l l e r  value to k in our  c a l -  
culat ions,  we have  elongated the d i f fuser  and el iminated the haza rd  of poss ib le  separa t ion ,  but then a n e a r -  
sepa ra t ion  flow may  a lso  not have  been rea l izab le .  The p rob lem in the study of n e a r - s e p a r a t i o n  d i f fusers  
with a c i r cu l a r  c ro s s  sect ion is  that  the geomet ry  of a model  cannot be adjusted during the exper iment .  
This  makes  it  difficult  to c o r r e c t  the e r r o r s  of calcula t ion and to approach  n e a r - s e p a r a t i o n  flow as  des i red .  
T h e r e f o r e ,  f o r  a given initial flow nonuniformity,  in prof i l ing  the model  we f i r s t  chose the s m a l l e r  value 
for k a t  which the theory  ag reed  with exis t ing tes t  data.  The model  was then bored  out so as to make  i ts  
p ro f i l e  co r respond  to the l a r g e r  calculated value of k, which al lowed us to es tabl i sh  t h e v a l u e  of this e m -  
p i r i ca l  constant  cor responding  to m ax i m um  dece le ra t ion  of the flow within a given channel length. 

In calculat ing channels with a thin boundary l aye r  a t  the en t rance ,  the theore t ica l  values  of local  d i -  
ve rgence  angles  a / 2  = 0.5 tan -I ( I I - tdF /dx)  become  excess ive ly  l a rge  ( a / 2  > 10~ In such c a s e s ,  in o r d e r  
to reduce  the a d v e r s e  effect  of the co rne r  point (which is d i s r ega rded  in the boundary l aye r  theory) ,  one 
usual ly  smooths  out ( a / 2  _< 9 ~ the junction between the en t rance  nozzle  and the d i f fuse r .  This  is equiva-  
lent  to reducing the peaks  in the local d ivergence  angle va r i a t ion  in the ent rance  s tage  and it  r e su l t s  in a 
depa r tu re  f rom the calcula ted model  geomet ry .  F o r  this r eason ,  we will cons ider  h e r e  t e s t  data p e r t a i n -  
ing to a d i f fuser  with a thick boundary l aye r  a t  the en t rance ,  the geomet ry  of which conforms  s t r ingent ly  
to calculat ions (with o~/2 angles  not exceeding 9~ 
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A c i r c u l a r  d i f fuser  with an en t rance  radius  rw0 = 42.5 m m  was designed for  A~ = 0.1 a t  k = 0.325. A 
theore t ica l  initial  nonunlformity  in the veloci ty  prof i le  was buil t  in by a cons tan t - sec t ion  ent rance  nozzle  
the length of which had been de te rmined  f rom the data in [9]. A col lec tor  was p laced before  the nozzle.  

Fo r  tes t ing  the d i f fuser  we used the conventional p rocedu re  of pnetunometr ic  m e a s u r e m e n t s .  The 
ve loc i ty  co r respond ing  to the initial flow nonuniformity was de te rmined  m o r e  p rec i s e ly  during the e x p e r i -  
m e n t  and its cons tancy was checked by the p r e s s u r e  drop a c r o s s  the col lec tor  a t  the ent rance .  The s ta t ic  
p r e s s u r e  was m e a s u r e d  through d ra in  holes  in the wall  which had been dr i l led  perpendicu la r ly  to the inner 
su r f ace  of the channel.  The  ve loc i ty  p rof i l es  in the boundary  l aye r  u = u(y /5)  we re  examined a t  s eve r a l  
sec t ions  by means  of a f u l l - p r e s s u r e  mic ronozz l e  instal led in a mie rocoord ina t e s  p lo t te r  and, on the bas i s  
of  these  p ro f i l e s ,  we de t e rmined  the nominal  d i sp lacemen t  a r e a s  and energy  l o s se s .  The s m a l l e s t  s tep of 
the mic rocoo rd in a t e s  p lo t t e r  was  0.02 m m .  The continuity condition a t  the var ious  channel sect ions  was  
sa t i s f ied  within an a c c u r a c y  of =~ 1% during m e a s u r e m e n t s .  

The r e su l t s  of m e a s u r e m e n t s  and the calculated re la t ions  a r e  shown in Fig. 1. The tes t  data a r e  
c o m p a r e d  h e r e  with the ve loc i ty  p rof i le  cor responding  to an ideal fluid flow in the channel us i  (ideal case) ,  
with the d is t r ibut ion  of ve loc i t ies  u s ( theoret ical  case)  cor responding  to a v iscous  fluid flow a t  a given in i -  
tial nonuniformity  of the veloci ty  prof i le ,  and a lso  with the calcula ted values  of A* and A***. The va r i an t s  
in Fig. l a  and Fig. l b  c o r r e s p o n d  to Re 0 = rw0u0/v = 0.85 �9 105 and 1.1 �9 105 re spec t ive ly  with a turbulent  
boundary l aye r  a t  the en t rance .  Accord ing  to the g raphs ,  our  exper imenta l  s tudy has  conf i rmed the va l id -  
ity of the bas ic  ca lcula ted  re la t ions .  The  smal l  va r i a t ion  in the Re 0 number  had no effect  on the a e r o d y n a m -  
ic c h a r a c t e r i s t i c s .  The sa t i s f ac to ry  a g r e e m e n t  between the theore t ica l  and the exper imenta l  values  of 
A* and A*** al lows us to conclude that  the ca lcula ted  coeff icient  of  t o t a l - p r e s s u r e  loss  ~ is suff iciently 
c lose  to i ts  t e s t  value [2]. 

The d i s to r t ion  of ve loc i ty  p ro f i l e s  in the boundary l aye r  is shown in Fig. 2, where  a gradual  t rans i t ion  
f r o m  adhes ive  to n e a r - s e p a r a t i o n  flow at  the ent rance  can be observed .  The deviat ion of t es t  points f rom 
those ca lcula ted  n e a r  the wall  is apparen t ly  caused  by m e a s u r e m e n t  e r r o r s  due, in pa r t i cu l a r ,  to an eccen -  
t r i c i ty  between the geomet r i c  and the effect ive opening in the mic ronozz le .  

The subsequent  bor ing  of the model  to conform to k = 0.400 did not improve  the tes ted  channel c h a r -  
a c t e r i s t i c s  (Fig. 3). The flow in the bo red -ou t  d i f fuser  was accompanied  by cons iderab le  p r e s s u r e  p u l s a -  
t ions.  As is shown in Fig. 3, a ve loci ty  va r ia t ion  along the channel axis  is not r evea led  so well  in theory:  
the t e s t  cu rve  of ve loci ty  d is t r ibut ion  usl(x ) devia tes  not iceably f r o m  the calculated us(x ) curve .  The a p -  
p roach  to s epa ra t ion  is man i fes t ed  by a d is tor t ion  of the axial  flow s y m m e t r y  in the d i f fuser  exit  s tage.  
When the d i sp l acemen t  a r e a  a t  sec t ions  he re  was m e a s u r e d  along one radius  (var iant  Fig. l a ) ,  the re fore ,  
the continuity condition was violated.  At x = x / rw0  = 7.2 the veloci ty  p rof i l es  we re  m e a s u r e d  along two 
mutual ly  pe rpend icu la r  d i a m e t e r s  (var iant  Fig. lb).  The continuity condition was then mainta ined within 
1%. Veloci ty p ro f i l e s  in the bo red -ou t  d i f fuser  a r e  shown in Fig. 4. 

On the bas i s  of this p resen ta t ion ,  we conclude that  d i f fusers  m a y  be designed accord ing  to the f o r -  
mulas  in [2] with the value for  the e m p i r i c a l  constant  taken as  k = 0.325. 

The author  thanks A. S. Ginevskii  for  a s s i s t a n c e  in c a r r y i n g  out this work.  
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N O T A T I O N  

a r e  the longitudinal and t r a n s v e r s e  coord ina tes ;  
a r e  the r ad ius ,  c i r c u m f e r e n c e ,  and c r o s s  sect ion a r e a  of a channel;  
is  the d i f fuse r  d ivergence  index; 
is half  of the local  d ivergence  angle;  
a r e  the th ickness  and a r e a  of the boundary l a y e r ;  
a r e  the d i sp l acemen t  a r e a ,  m o m e n t u m ,  and energy  l o s s e s ;  
is  the veloci ty  a t  the channel en t rance ,  ave raged  with r e s p e c t  to the flow r a t e ;  
a r e  the d imens ion less  ve loci t ies  along the channel axis  (ideal flow, calcula ted,  and tested}; 
is the Reynolds number ;  
is the coeff ic ient  of  t o t a l - p r e s s u r e  loss  ; 
is  an empi r i ca l  constant ;  
is the f r ic t ional  s t r e s s  a t  the channel wall .  
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